diffusion_models.utils.schemas

Module Contents

class TrainingConfiguration[source]
training_name: str[source]
batch_size: int[source]
learning_rate: float[source]
number_of_epochs: int[source]
log_rate: int = 10[source]
image_rate: int = 100[source]
checkpoint_rate: int = 100[source]
mixed_precision_training: bool = False[source]
gradient_clip: float | None = None[source]
class LogConfiguration[source]
log_rate: int = 10[source]
image_rate: int = 50[source]
number_of_images: int = 5[source]
class BetaSchedulerConfiguration[source]
steps: int[source]
betas: torch.Tensor[source]
alpha_bars: torch.Tensor[source]
class Checkpoint[source]
epoch: int[source]
model_state_dict: Dict[str, Any][source]
optimizer_state_dict: Dict[str, Any][source]
scaler: torch.cuda.amp.GradScaler | None[source]
beta_scheduler_config: BetaSchedulerConfiguration[source]
tensorboard_run_name: str | None = None[source]
image_channels: int = 3[source]
loss: float | None = None[source]
classmethod from_file(file_path)[source]
to_file(file_path)[source]
class OldCheckpoint[source]
epoch: int[source]
model_state_dict: Dict[str, Any][source]
optimizer_state_dict: Dict[str, Any][source]
scaler: torch.cuda.amp.GradScaler | None[source]
tensorboard_run_name: str | None = None[source]
loss: float | None = None[source]
classmethod from_file(file_path)[source]
to_file(file_path)[source]
to_new_checkpoint(beta_scheduler)[source]